

Instructor’s Notes

Lab Manual
to Accompany
Starting Out With C++
 Early Objects 7th ed.

	Starting Out With C++
	

	[bookmark: _GoBack]Early Objects 7th ed.

	
	General Information
	

This lab manual contains labs to accompany the first six chapters of Starting Out with C++: Early Objects. Labs for additional chapters will be added later. Each lab consists of a number of exercises to help students better understand the key concepts of the chapter. The lab for Chapter 1 will need to be instructor guided, as students will not yet be familiar with the computer system and C++ IDE they will be working with. Beginning with Chapter 2, students should be able to complete the labs individually or in pairs with only minimal help from the instructor.

Organization of Each Lab
· Each lab set begins with one or more exercises called “Try Its”. In these the student reads a block of sample code and tries to understand it well enough to predict and write down what output it will produce. The student then “tries it” on the computer to see if he or she is correct. These exercises are carefully planned to illustrate key ideas and constructs from the chapter and to include examples dealing with misconceptions new programming students typically have about how things work.
· Each lab set then contains a number of exercises that ask students to complete partially written programs. Each program deals with one key concept from the chapter. Students practice working with this material and end up with fully working programs they can test, without having to write a whole program from scratch every time. This enables them to cover more key material per lab session.
· Beginning with Chapter 2, each lab set ends with one exercise that asks students to apply what they have learned in the chapter to design and implement a complete program.

Time Requirements
The Chapter 1 lab can probably be completed in a single 1-hour lab session. Beginning with Chapter 2, most students will require two hours to complete each lab, perhaps more to finish the student-written program assigned in the final lab exercise. If the student’s class does not include 2-hours of weekly lab, they can begin the lab work during lab time and finish for homework. Alternatively, instructors may wish to assign the “Try Its” that begin each lab for homework before the actual lab session and have students complete the remainder of the lab work during the lab session.

	Starting Out With C++
	
Lab 1 KEY
	Early Objects 7th ed.

To begin
· Follow the instructions your professor gives you to log on to your system and create a folder named Lab1 in your work space.
· Copy all the files in the Chapter01 lab folder to your Lab1 folder.
· Follow the instructions your professor gives you to run the IDE your class will use for your C++ programs and create a project named Lab1.	
LAB 1.1 – TRY IT: Compiling and Running Your First Program
Step 1: Add the greeting.cpp program from your Lab1 folder to the project. Your professor will show you how to do this. Here is a copy of the source code.
 1 // greeting.cpp
 2 // This program prints a message to greet the user.
 3 #include <iostream> // Needed to do C++ I/O
 4 #include <string> // Needed by some compilers to use strings
 5 using namespace std;
 6
 7 int main ()
 8 {
 9 string name; // This declares a variable to
10 // hold the user's name
11 // Get the user's name
12 cout << "Please enter your first name: ";
13 cin >> name;
14
15 // Print the greeting
16 cout << "Hello, " << name << "." << endl;
17
18 return 0;
19 }
Step 2: Read the source code. What do you think the program will display when it is run if the user enters the name Adam on line 12? ____Hello, Adam.________________________________
Step 3: Follow the instructions your professor gives you to compile the program. You should see a message at the bottom of the screen telling you the program has compiled correctly. This message will be different for each compiler, but may look something like this:
greeting.o – 0 error(s), 0 warning(s)
Notice what the message looks like on your system.
Step 4: Now follow the instructions your professor gives you to execute the program. Enter the name Adam when the program prompts you for a name. Did you get the output you expected? ________ Run the program again, and this time enter your first name when you are prompted for a name. Write a copy of the output here. __

 Computer Program Errors
The greeting.cpp program compiled and ran correctly because it contained no errors. However, there are three different types of errors that can occur in a computer program, and all of these need to be found and fixed before a program will work correctly. Each of these three errors is examined below.
LAB 1.2 – Syntax Errors
A syntax error in a program, just like a syntax error in English, means that a grammar rule has been broken. One or more of the programming statements in the source code do not follow the rules for how a C++ program must be written. Let’s take a look at the most commonly made C++ syntax error, an omitted semi-colon.
Step 1: Remove the semi-colon on line 12 of the greeting.cpp program. To do this you can simply place your cursor at the end of line 12 and press the back space key. Once the semi-colon is gone, recompile the program and look at the error message displayed at the bottom of the screen. The exact message you get will depend on which compiler you are using, but it will likely look something like this:
greeting.cpp:13: error: expected ‘;’ before “cin”
Always read the message carefully. Sometimes it is clear what is wrong. Other times the message may be confusing to a new programmer, but you will get better at deciphering compiler error messages as you gain more experience. This message is quite clear. It says that a semi-colon is missing before the word cin.
Notice that the compiler error message also includes a line number indicating the approximate, but not exact, location where the error occurred. In this case the error occurred at the end of line 12, but the compiler message reports the error as occurring on line 13. This is because the compiler did not detect the problem until it reached the cin on line 13. Any time you get a compiler error message and do not see a problem in the line reported , try checking the previous line.
Step 2: A program containing compiler errors cannot be run until the errors are fixed and the program is recompiled. Put the semi-colon back in at the end of line 12 and then compile the program again. If you have done it correctly, it will compile with no errors this time. Now you can run the program again.
Step 3: Follow the instructions your professor gives you to remove greeting.cpp from the project. This must be done so the same project can be used to run a different program.
LAB 1.3 – Run-time Errors
A run-time error occurs when a program instruction tells the program to do something it is unable to correctly do. This type of error cannot be detected by a compiler because no syntax rules have been broken. So the program will compile but, as the name suggests, something will go wrong when the program is run. In some cases a run-time error causes the program to abort; in others it continues running, but produces incorrect results. Let’s take a look at a common run-time error, attempting to divide by zero.
Step 1: Add the average.cpp program from your Lab1 folder to the project. Here is a copy of the source code.
 1 // average.cpp
 2 // This program finds the average of two numbers.
 3 // It contains two errors that must be fixed.
 4 #include <iostream>
 5 using namespace std;
 6
 7 int main ()
 8 {
 9 int size = 0; // The number of values to be averaged
10 double num1,
11 num2,
12 average; // Average of num1 and num2
13
14 // Get the two numbers
15 cout << "Enter two numbers separated by one or more spaces: ";
16 cin >> num1 >> num2;
17
18 // Calculate the average
19 average = num1 + num2 / size;
20
21 // Display the average
22 cout << "The average of the two numbers is: " << average << endl;
23
24 return 0;
25 }
Step 2: Read through the source code to see if you can spot any errors in the program. Two lines contain errors, but even if you can find them, do not fix them yet.
Step 3: Compile the program. Since it contains no syntax errors, the compiler should not detect any errors.
Step 4: Run the program and, at the prompt, enter 10 5. Did the run-time error cause the program to abort or to produce incorrect results? If it ran without aborting it probably displayed something like this:
Enter two numbers separated by one or more spaces: 10 5
The average of the two numbers is: 1.#INF
Step 5: The error occurs on line 19 when a quantity is divided by size. Notice that size is set in line 9 to 0. Correct the error by changing line 9 of the source code to set size equal to 2 so that the quantity on line 19 will be divided by 2. Then recompile and rerun the program, again entering 10 and 5 for the two numbers. The output should now look like this:
Enter two numbers separated by one or more spaces: 10 5
The average of the two numbers is: 12.5 <Note: The program now runs, but the
answer is wrong because there is still a logic error that will be dealt with in the next exercise.>

LAB 1.4 – Logic Errors
A logic error causes a program to work incorrectly. It doesn’t break any syntax rules and doesn’t tell the computer to do anything it is unable to do. Instead it occurs when the program logic is wrong because what the programmer tells the program to do does not match what he or she means for it to do. If you were explaining to someone how to do laundry, it would be a logic error to tell them to put the laundry in the oven, when what you meant was for them to put it in the washer. Another logic error would occur if you told them to wash the laundry and then fold it, but forgot to tell them to dry it. It would also be a logic error if you got the steps out of order and told them to first fold the laundry, then dry it, and then finally to wash it. Likewise, for a program to be correct each instruction must be correct, no instructions must be omitted, and the instructions must be carried out in the right order.
Let’s look at a logic error that causes a program to carry out two mathematical operations in the wrong order.
Step 1: Look again at the output created by the average.cpp program in Step 5 of Lab 1.3 above. Notice that the user entered 10 and 5, but the program reported the average to be 12.5, rather than 7.5. The error occurs on line 19. To find an average of a set of values, you must add the values before you divide by the number of values. But the code on line 19 tells the computer to divide the value stored in num2 by size before adding the result to the value stored in num1. You will learn more in chapters 2 and 3 about how to write correct mathematical statements in C++. For now, just add parentheses on line 19 so it says:
average = (num1 + num2) / size;
Step 2: Recompile and rerun the program, again entering 10 and 5 at the prompt. Now that you have corrected the logic error, you should get the following correct result.
Enter two numbers separated by one or more spaces: 10 5
The average of the two numbers is: 7.5

LAB 1.5 – Fix the Errors
Step 1: Remove average.cpp from the project and add findErrors.cpp to the project. Here is a copy of the source code.
 1 // findErrors.cpp
 2 // This program has one syntax error and one logic error. Find and fix them.
 3 // PUT YOUR NAME HERE.
 4 #include <iostream>
 5 using namespace std // Syntax error – missing semi-colon
 6
 7 int main ()
 8 {
 9 double length = 0, // Length of a room in feet
10 width = 0, // Width of a room in feet
11 area; // Area of the room in sq. ft.
12
13 // Get the room dimensions
14 cout << "Enter room length (in feet): ";
15 cin >> length;
16
17 cout << "Enter room width (in feet): ";
18 cin >> length; // Logic error – length is entered twice
19 // width remains zero
20 // Compute and display the area
21 area = length * width;
22 cout << "The area of the room is " << area << " square feet." << endl;
23
24 return 0;
25 }

Step 2: Put your name on line 3. Then compile the program. It contains one syntax error and one logic error.
Step 3: Use the compiler error message to help you locate the syntax error and fix it.
Step 4: Once the program compiles with no errors, run the program, and examine the output. Analyze what is going wrong so you can find and fix the logic error in the program. Once you have it running correctly the output should look like the following:
Enter room length (in feet): 15
Enter room width (in feet): 10
The area of the room is 150 square feet.

Step 5: Follow the instructions your professor gives you to print the final, correct findErrors.cpp source code and the output the program displays when it runs.

See findErrors-KEY.cpp

	Starting Out With C++
	
	Early Objects 7th ed.

	
	Lab 2 KEY
	

	
	

	
Name _____________________________

To begin
· Log on to your system and create a folder named Lab2 in your work space.
· Copy all the files in the Chapter02 lab folder to your Lab2 folder.
· Start the C++ IDE running and create a project named Lab2.
LAB 2.1 - TRY IT: Using cout for Output
Step 1: Add the tryIt2A.cpp program in your Lab2 folder to the project. Here is a copy of the source code.
	
 1 // Lab 2 tryIt2A
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 { int x = 1, y = 3;
 7 int X = 2, Y = 4;
 8
 9 cout << "tryIt 2A" <<endl;
10 cout << x << y << endl;
11 cout << "x" << "y" << endl;
12 cout << X << " " << Y << endl;
13 cout << 2 * x + y << endl;
14 cout << 2 * X + Y << endl;
15 //cout << x + 2*y << endl;
16 cout << "x = ";	
17 cout << x;		
18 cout << " y = ";	
19 cout << y;	
20
21 return 0;
22 }

	Expected Output

	Observed Output

__ tryIt 2A____
___13__________
___xy__________
___2 4_________
___5___________
___8___________
___nothing_____

___x = 1 y = 3_

Step 2: Read the source code, paying special attention to the cout statements. Then complete the “Expected Output” column above, writing down what output you think each cout statement will produce.
Step 3: Now compile and run the tryIt2A.cpp program, and look at the output it creates. If the actual output from a cout statement matches what you wrote down, just place a checkmark in the “Observed Output” column. If it is not the same, write down the actual output.

Step 4: Answer in full sentences. If x is the name of a variable, what is the difference between the following two statements?
cout << x; This prints the value stored in the variable.
cout << "x"; This prints the letter x.________________

LAB 2.2 - TRY IT: Using endl and \n
Step 1: Remove tryIt2A.cpp from your Lab2 project. Then add the tryIt2B.cpp program in your Lab2 folder to the project. Here is a copy of the source code.
 1 // Lab 2 tryIt2B -- Using endl and \n
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 cout << "tryIt2B" << '\n';
 8 cout << "Hello " << "endl";
 9 cout << "Hello " << endl;
10 cout << "Hello /n";
11 cout << "Hello \\n";
12 cout << "Hello \n";
13
14 return 0;
15 }

Step 2: Study the source code carefully. Then, in the space provided below, write down exactly what you think the program will display.

 Step 3: Now compile and run the tryIt2B.cpp program, and look at the output it creates. If the actual output does not match what you wrote above, write down the actual output here.

tryIt2B
Hello endlHello
Hello /nHello \nHello

LAB 2.3 – Working with Arithmetic Operators and Assignment Statements
Step 1: Remove tryIt2B.cpp from your Lab2 project. Then add the tryIt2C.cpp program in your Lab2 folder to the project. Here is a copy of the source code.
	
 1 // Lab 2 tryIt2C					
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 { int a = 5, b = 2, answer1;
 7 double c = 2.0, answer2;
 8
 9 cout << "tryIt2C" << endl;
10 cout << a + b << " " << a - b << endl;
11 cout << a * b << " " << a % b << endl;
12 cout << a / b << " " << a / c << endl;
13
14 answer2 = a / c;
15 answer1 = answer2;
16 cout << answer1 << " " << answer2 << endl;
17
18 a = a - 1;
19 b = a * 2;
20 c = a * b + c;
21 cout << a << " " << b << " " << c << endl;
22
23 return 0;
24 }
	Expected Output

	Observed Output

tryIt2C__
7 3_____
10 1____
2 2.5___

2 2.5___

4 8 34__

Step 2: Read the source code, paying special attention to the arithmetic operators. Then complete the “Expected Output” column above, writing down what output you think each cout statement will produce.
Step 3: Now compile and run the tryIt2C.cpp program, and look at the output it creates. If the actual output from a cout statement matches what you wrote down, just place a checkmark in the “Observed Output” column. If it is not the same, write down the actual output.

LAB 2.4 – C++ Output
Step 1: Remove tryIt2C.cpp from your Lab2 project. Then add the contactInfo.cpp program in your Lab2 folder to the project. Here is a copy of the source code.
 1 // contactInfo.cpp -- This program prints information about the programmer.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 // WRITE A cout STATEMENT TO PRINT YOUR FIRST AND LAST NAME,
 8 // FOLLOWED BY A BLANK LINE.
 9 // WRITE A cout STATEMENT TO PRINT YOUR PREFERRED PHONE NUMBER.
10 // WRITE A cout STATEMENT TO PRINT YOUR PREFERRED EMAIL ADDRESS.
11
12 return 0;
13 }

Step 2: Replace each capitalized comment with a line of C++ code that does what the comment asks you to do. Then compile and run the program. The output should look something like this:
Jane Doe

213-555-5555
Jane.Doe@myProvider.net

Step 3: If your professor asks you to do so, print the source code and output to hand in.

LAB 2.5 – Your First Complete Program

Step 1: Remove contactInfo.cpp from your Lab2 project. Then add brownies.cpp in your Lab2 folder to the project. This file contains just a program shell in which you will write all the programming statements needed to complete the program. Here is a copy of the current contents of brownies.cpp.
 1 // brownies.cpp
 2 // WRITE A COMMENT BRIEFLY DESCRIBING THE PROGRAM.
 3 // PUT YOUR NAME HERE.
 4 // INCLUDE THE FILE NEEDED TO DO I/O
 5 using namespace std;
 6
 7 int main()
 8 {
 9 // DECLARE ALL NEEDED VARIABLES HERE. GIVE EACH ONE A DESCRIPTIVE
10 // NAME AND AN APPROPRIATE DATA TYPE.
11
12 // WRITE STATEMENTS HERE TO PROMPT FOR AND INPUT THE INFORMATION
13 // THE PROGRAM NEEDS TO GET FROM THE USER.
14
15 // WRITE STATEMENTS HERE TO PERFORM ALL NEEDED COMPUTATIONS
16 // AND ASSIGN THE RESULTS TO VARIABLES.
17
18 // WRITE STATEMENTS HERE TO DISPLAY THE REQUESTED INFORMATION.
19
20 return 0;
21 }

Step 2: Create a program that determines how many brownies will fit in a baking pan of a specified size. Using the final, corrected findErrors.cpp program from Lab 1 as a model, design and implement the brownies.cpp program so that it correctly does the following:
· Prompt the user to enter the length and width (in inches) of a baking pan.
· Compute the surface area of the bottom of the pan.
· Compute how many small brownies the pan will hold if each one is cut with a 1”x1” square bottom.
· Compute how many big brownies the pan will hold if each one is cut with a 2”x2” square bottom.
· Display, with appropriate labels, the pan dimensions, the number of small brownies, and the number of large brownies the pan can hold. The output might look something like this:
A 12 X 9 inch pan can hold 108 small brownies or 27 large brownies.
Step 3: Once you have designed and written your program, and it compiles with no errors, test it with the following data: <Correct answers are shown below.>
· Run 1: A 12 x 9” pan (length 12, width 9) 108 small brownies or 27 large brownies
· Run 2: An 8” square pan (length 8, width 8) 64 small brownies or 16 large brownies
· Run 3: A 15 x 12” pan (length 18, width 12) 180 small brownies or 45 large brownies
Step 4: Print a copy of the source code and the output of all 3 runs to hand in to your professor.
See brownies-KEY.cpp

	Starting Out With C++
	
	Early Objects 7th ed.

	
	Lab 3 KEY
	

	
	

	
Name _____________________________

To begin
· Log on to your system and create a folder named Lab3 in your work space.
· Copy all the files in the Chapter03 lab folder to your Lab3 folder.
· Start the C++ IDE running and create a project named Lab3.

LAB 3.1 - TRY IT: Evaluating Arithmetic Expressions
Step 1: Add the tryIt3A.cpp program in your Lab3 folder to the project. Here is a copy of the source code for int main().
	 1 // Lab 3 tryIt3A

 9 int main()
10 { int someInt,
11 w = 5, x = 9, y = 2, z = 7;
13 char someChar = 'A';
15 cout << "tryIt3A output \n";
17 z += 3;
18 cout << z << " " << z % w << endl;
20 z *= w + y;
21 cout << z << endl;
23 z -= 60.1;
24 cout << z << endl;
26 cout << (x-1) / (x-w) * y << endl;
28 cout << (x-1) / ((x-w) * y) << endl;
30 cout << static_cast<double>(x) / y << endl;
32 cout << x / y << endl;
34 cout << (w + x % 7 / y) << endl;
36 cout << (abs(y - w) + sqrt(x)) << endl;
38 someInt = someChar;
39 cout << someChar << " "
40 << someInt << endl;
41
42 return 0;
43 }
	Expected Output

	Observed Output

tryIt3A output

_10 0_____

_70________

_9_________
_4_________
_1_________
_4.5_______
_4_________
_6_________
_6_________

_A 65_____

Step 2: Read the source code, paying special attention to the order of operations when each arithmetic expression is evaluated. Then complete the “Expected Output” column above, writing down what output you think each cout statement will produce.

Step 3: Now compile and run the tryIt3A.cpp program, and look at the output it creates. If the actual output from a cout statement matches what you wrote down, just place a checkmark in the “Observed Output” column. If it is not the same, write down the actual output.

LAB 3.2 – Review: Finding and Correcting Syntax Errors
Step 1: Remove tryIt3A.cpp from the project and add the findErrors.cpp program in your Lab3 folder to the project. Here is a copy of the source code.
 1 // Lab 3 findErrors.cpp
 2 // This program contains many syntax errors and will not compile.
 3 // Fix the errors so that it correctly finds the average of the
 4 // two integers the user enters.
 5 // PUT YOUR NAME HERE.
 6
 7 #include <iostream>
 8 using namespace std;
 9
10 int main
11 Int num1, num2,
12 double average;
13
14 // Input 2 integers
15 Cout << "Enter two integers separated by one or more spaces: ";
16 Cin << num1, num2;
17
18 Find and display their average
19 (num1 + num2) / 2 = average;
20
21 Cout << "\nThe average of these 2 numbers is " << average << "endl";
22
23 return 0;

Step 2: Find and correct all the syntax errors so that the program compiles and correctly finds the average of two entered integers. See findErrors-KEY.cpp
Step 3: Once the program compiles with no errors, test it with the following data. If any answers are wrong, fix the logic error in the program and test it again. <Correct answers are shown below.>
· Run 1: 6 8 7
· Run 2: 0 -2 -1
· Run 3: 7 8 7.5
Step 4: Hand in the final, correct source code listing and the output from your three runs if your professor requests it.	

LAB 3.3 – Working with String Input and Type Casting
Step 1: Remove findErrors.cpp from the project and add the percentage.cpp program in your Lab3 folder to the project. Here is a copy of the source code.
 1 // Lab 3 percentage.cpp
 2 // This program will determine the percentage
 3 // of answers a student got correct on a test.
 4 // PUT YOUR NAME HERE.
 5
 6 // INCLUDE THE FILE NEEDED TO DO I/O
 7 // INCLUDE THE FILE NEEDED TO FORMAT OUTPUT
 8 using namespace std;
 9
10 int main()
11 {
12 string name;
13 int numQuestions,
14 numCorrect;
15 double percentage;
16
17 // Get student's test data
18 cout << "Enter student's first and last name: ";
19 // WRITE A STATEMENT TO READ THE WHOLE NAME INTO THE name VARIABLE.
20
21 cout << "Number of questions on the test: ";
22 cin >> numQuestions;
23 cout << "Number of answers the student got correct: ";
24 cin >> numCorrect;
25
26 // Compute and display the student's % correct
27 // WRITE A STATEMENT TO COMPUTE THE % AND ASSIGN THE RESULT TO percentage.
28
29 // WRITE STATEMENTS TO DISPLAY THE STUDENT'S NAME AND THEIR TEST
30 // PERCENTAGE WITH ONE DECIMAL POINT.
31
32 return 0;
33 }	

Step 2: Replace each capitalized comment with C++ code that does what the comment asks you to do. Then compile and run the program.
Here is what a sample run should look like:
Sample Run
Enter student's first and last name: John Smith
Number of questions on the test: 40
Number of answers the student got correct: 31

John Smith 77.5%
Step 3: Once the program compiles with no errors, test it with the following data. If any answers are wrong, fix the logic error in the program and test it again. See percentage-KEY.cpp
· Run 1: John Smith 40 31 77.5%
· Run 2: Mary Jones 19 20 95.0%
· Run 3: Juan Sanchez 11 12 91.7%

Step 4: If your professor asks you to do so, print the final, corrected source code and output to hand in.
LAB 3.4 – Reading Data From a File and Formatting Output
Step 1: Remove percentage.cpp from the project and add the table.cpp program in your Lab3 folder to the project. Here is a copy of the source code.
 1 // Lab 3 table.cpp
 2 // This program reads data from a file and
 3 // prints it in a nicely aligned table.
 4 // PUT YOUR NAME HERE.
 5
 6 #include <iostream>
 7 // INCLUDE THE FILE NEEDED TO USE FILES.
 8 // INCLUDE THE FILE NEEDED TO FORMAT OUTPUT.
 9 // INCLUDE THE FILE NEEDED TO USE STRINGS.
10 using namespace std;
11
12 int main()
13 {
14 string code, // Item code of an inventory item
15 description; // Description of an inventory item
16 int quantity; // Quantity in stock of an inventory item
17
18 ifstream dataIn; // Define an input file stream object
19
20 // WRITE A STATEMENT TO OPEN THE table.dat FILE THAT WILL BE
21 // ACCESSED THROUGH THE dataIn FILE STREAM OBJECT.
22
23 // Print table heading
24 cout << " Warehouse Inventory \n";
25 cout << "==============================\n\n";
26 cout << "Item Item Item\n";
27 cout << "Code Description Qty\n\n";
28
29 // Read in five data records and display them
30 dataIn >> code >> description >> quantity; // Record 1
31 cout << code << description << quantity << endl;
32
33 // REPEAT THE ABOVE CODE FOR RECORDS 2 THROUGH 5.
34
35 // Close the file
36 // WRITE A STATEMENT TO CLOSE THE DATA FILE.
37
38 return 0;
39 }
Step 2: Make sure the table.dat file is in your project folder. If not, copy it there now.
Step 3: Replace each capitalized comment with C++ code that does what the comment asks you to do. Then compile and run the program.
Step 4: The program should produce 5 lines of output under the table heading, but because it is not yet formatted, the columns do not align as they should. Add format statements to your five cout statements so that the item code is followed by 3 blanks, item description prints left justified in a field width of 14, and item quantity prints right justified in a field width of 7. If you do this correctly, all columns will align as they should under the column headings.
Step 5: If your professor asks you to do so, print the final, source code and formatted output to hand in.

A solution can be found in the table-KEY.cpp file. The correctly formatted output looks like this:
 Warehouse Inventory
==============================

Item Item Item
Code Description Qty

A1751 widget 115
B1602 gadget 219
C0904 thingamajig 44
D5214 whachamacallit 1502
E7719 doohicky 7

LAB 3.5 – Complete Program
Step 1: Remove table.cpp from the project and add the icecream.cpp program in your Lab3 folder to the project. This file contains just a program shell in which you will write all the programming statements needed to complete the program. Here is a copy of the current contents of icecream.cpp.
 1 // Lab 3 icecream.cpp
 2 // WRITE A COMMENT BRIEFLY DESCRIBING THE PROGRAM.
 3 // PUT YOUR NAME HERE.
 4 // INCLUDE ANY NEEDED FILES HERE.
 5 using namespace std;
 6
 7 int main()
 8 {
 9 // DEFINE NAMED CONSTANTS HERE TO HOLD THE PRICES OF THE 3
10 // SIZES OF ICE CREAM CONES. GIVE EACH ONE A DESCRIPTIVE
11 // NAME AND AN APPROPRIATE DATA TYPE.
12
13 // DECLARE ALL NEEDED VARIABLES HERE. GIVE EACH ONE A DESCRIPTIVE
14 // NAME AND AN APPROPRIATE DATA TYPE.
15
16 // WRITE STATEMENTS HERE TO PROMPT FOR AND INPUT THE INFORMATION
17 // THE PROGRAM NEEDS TO GET FROM THE USER.
18
19 // WRITE STATEMENTS HERE TO PERFORM ALL NEEDED COMPUTATIONS
20 // AND ASSIGN THE RESULTS TO VARIABLES.
21
22 // WRITE STATEMENTS HERE TO DISPLAY THE REQUESTED INFORMATION.
23
24 return 0;
25 }
Step 2: Design and implement the icecream.cpp program so that it correctly meets the program specifications given below. You may find it helpful to use pseudocode to work out the program logic before you begin coding the program in C++.
	Specifications:
The DeLIGHTful Ices Company sells delicious but low-cal “light” ice cream cones in 3 sizes and prices:
DeLIGHTful (1 scoop) 1.49
Double DeLIGHT (2 scoops) 2.49
Triple DeLIGHT (3 scoops) 3.49
Write a program that prompts the user to enter the number of each cone type sold that day, and then computes and displays a daily sales report that includes the following nicely formatted and labeled information.
· Number of cones sold of each type
· Total sales $ of each type
· Total number of cones sold
· Total sales $ of all cones sold
	Sample Run
Number of single scoop cones sold: 220
Number of double scoop cones sold: 414
Number of triple scoop cones sold: 66

DeLIGHTful cones 220 $ 327.80
Double DeLIGHT cones 414 $1030.86
Triple DeLIGHT cones 66 $ 230.34
Total 700 $1589.00

Step 3: Once you have your program working, test it with the data given in the sample run above and with one other good test case of your own. A solution can be found in the icecream-KEY.cpp file.

Step 4: Print a copy of the source code and the output of both runs to hand in to your professor.

	Starting Out With C++
	
	Early Objects 7th ed.

	
	Lab 4 KEY
	

	
	
	Name _____________________________

To begin
· Log on to your system and create a folder named Lab4 in your work space.
· Copy all the files in the Chapter04 lab folder to your Lab4 folder.
· Start the C++ IDE running and create a project named Lab4.
LAB 4.1 – TRY IT: Using Relational and Logical Operators
Step 1: Add the tryIt4A.cpp program in your Lab4 folder to the project. Below is a copy of the source code lines that contain output statements. Remember that arithmetic operations are done before relational operations and that relational operations are done before logical operations. Recall also that if you output a Boolean variable or the result of a Boolean expression, true displays as a 1 and false displays as a 0.
	1 // Lab 4 tryIt4A

10 cout << (3 == 4) << endl;
11 cout << (3 == 3) << endl;
12 cout << (5 == 3 + 2) << endl << endl;

14 cout << (7 > 5) << endl;
15 cout << (7 > 5 + 2) << endl;
16 cout << (2 >= 8 % 3) << endl << endl;

18 cout << (8 < 6) << endl;
19 cout << (3 * 5 < 2 * 9 - 1) << endl;
20 cout << (5 * 4 <= 40 / 2) << endl << endl;

22 cout << (3 != 5) << endl;
23 cout << (3 != 9 - 2 * 3) << endl;
24 cout << (10 != (4 * 5) / 2) << endl << endl;

26 cout << (5 > 6 && 3 < 4) << endl;
27 cout << (5 > 6 || 3 < 4) << endl;
28 cout << (!(7 > 6)) << endl << endl;

30 cout << (2 * 3 == 6 && !(1 > 2)) << endl;
31 cout << (!(2 * 3 == 6 && 1 > 2)) << endl;
32 cout << (!(2 * 3 == 6 && 1 != 2)) << endl;
	Expected Output

	Observed Output

______0_____
______1_____
______1_____

______1_____
______0_____
______1_____

______0_____
______1_____
______1_____

______1_____
______0_____
______0_____

______0_____
______1_____
______0_____

______1_____
______1_____
______0_____

Step 2: Read the source code, paying special attention to the relational and logical operators. Then complete the “Expected Output” column, writing down the output you think each cout statement will produce.

Step 3: Now compile and run the tryIt4A.cpp program, and look at the output it creates. If the actual output from a cout statement matches what you wrote down, just place a checkmark in the “Observed Output” column. If it is not the same, write down the actual output.

LAB 4.2 – Using Boolean Variables and Branching Logic
Step 1: Remove tryIt4A.cpp from the project and add the tryIt4B.cpp program in your Lab4 folder to the project. Here is a copy of the int main() source code.
	 1 // Lab 4 tryIt4B

 8 int main()
 9 {
10 bool hungry = true,
11 sleepy = false,
12 happy = true,
13 lazy = false;
14
15 cout << hungry << " " << sleepy
 << endl;
16
17 if (hungry == true)
18 cout << "I'm hungry. \n";
19
20 if (sleepy == true)
21 cout << "I'm sleepy. \n";
22
23 if (hungry)
24 cout << "I'm still hungry. \n";
25 else
26 cout << "I'm not hungry. \n";
27
28 if (sleepy)
29 cout << "I'm still sleepy. \n";
30 else
31 cout << "I'm not sleepy. \n";
32
33 if (sleepy)
34 cout << "I'm sleepy. \n";
35 else if (lazy)
36 cout << "I'm lazy. \n";
37 else if (happy)
38 cout << "I'm happy. \n";
39 else if (hungry)
40 cout << "I'm hungry. \n";
41
42 return 0;
43 }

	Expected Output

	Observed Output

1 0_____________

I'm hungry.______

I'm still hungry.

I'm not sleepy.__

I'm happy._______

Step 2: Read the source code, paying special attention to the expressions that control the branching statements. Then complete the “Expected Output” column above, writing down what output you think each cout statement will produce. If no output will be produced, leave the line blank.

Step 3: Now compile and run the tryIt4B.cpp program, and look at the output it creates. If the actual output from a cout statement matches what you wrote down, just place a checkmark in the “Observed Output” column. If it is not the same, write down the actual output.

LAB 4.3 – Working with the if and if/else Statements
Step 1: Remove tryIt4B.cpp from the project and add the testNum.cpp program in your Lab4 folder to the project. Here is a copy of the source code.
 1 // Lab 4 testNum.cpp
 2 // This program checks to see if a test score is equal to 100.
 3 // It currently contains a logic error.
 4 // PUT YOUR NAME HERE.
 5 #include <iostream>
 6 using namespace std;
 7
 8 int main()
 9 {
10 int score = 65; // Initialize student's test score
11
12 if (score = 100) // This is the logic error.
13 cout << "You made a perfect score.\n";
14
15 if (score != 100)
16 cout << "You needed " << 100 - score
17 << " more points for a perfect score.\n";
18
19 return 0;
20 }

Step 2: What do you think the program will print when it is run?
It will print You made a perfect score., but students are apt to think that the cout statement on lines 16-17 will print instead since they likely will not initially notice that line 12 used = instead of ==.
Compile and run the program. Did it produce the output you expected? ___________
Find the logic error in the program and fix it so that the program produces the correct output. Write down the correct output it now displays. You needed 35 more points for a perfect score.
Step 3: Replace the two if statement in the program with a single if/else statement. Then recompile and rerun it. You should get the same correct output you wrote down above.
See testNum-KEY.cpp

LAB 4.4 – Working with if/else if Statements
Step 1: Remove testNum.cpp from the project and add the color.cpp program in your Lab4 folder to the project. Here is a copy of the source code.
 1 // Lab 4 color.cpp
 2 // This program lets the user select a primary color from a menu.
 3 // PUT YOUR NAME HERE.
 4 #include <iostream>
 5 #include <string>
 6 using namespace std;
 7
 8 int main()
 9 {
10 int choice; // Menu choice should be 1, 2, or 3
11
12 // Display the menu of choices
13 cout << "Choose a primary color by entering its number. \n\n";
14 cout << "1 Red \n" << "2 Blue \n" << "3 Yellow \n";
15
16 // Get the user's choice
17 cin >> choice;
18
19 // Tell the user what he or she picked
20 if (choice == 1)
21 cout << "\nYou picked red.\n";
22 else if (choice == 2)
23 cout << "\nYou picked blue.\n";
24 else
25 cout << "\nYou picked yellow.\n";
26
27 return 0;
28 }
Step 2: Compile the program and then run it 5 times. For each run enter the menu choice shown in the table below and write down the current output the program displays.
Run	Menu choice	 Current output			New output
 	 1 		1		You picked red.____	You picked red.____
	 2		2		You picked blue.___	You picked blue.___
	 3		3		You picked yellow._	You picked yellow._
	 4		0		You picked yellow._	You must choose 1, 2, or 3.
	 5		99		You picked yellow._	You must choose 1, 2, or 3.

Step 3: Improve the program so that only 1, 2, and 3 are accepted as valid choices. Make line 24 check for a choice of 3 before printing the message on line 25. Then add a trailing else that prints a descriptive error message whenever anything other than 1, 2, or 3 is entered.

Step 4: Recompile the program and run it 5 more times, using the same 5 menu choices shown above. For each run, write down the new output the program now displays.
Note: New output for runs 4 and 5 can be any valid, descriptive error message. See color-KEY.cpp

LAB 4.5 – Working with Nested if/else Statements
Step 1: Remove color.cpp from the project and add the petTag.cpp program in your Lab4 folder to the project. Here is a copy of the source code.
 1 // Lab 4 petTag.cpp
 2 // This program determines the fee for a cat or dog pet tag.
 3 // It uses nested if/else statements.
 4 // PUT YOUR NAME HERE.
 5 #include <iostream>
 6 #include <string>
 7 using namespace std;
 8
 9 int main()
10 {
11 string pet; // "cat" or "dog"
12 char spayed; // 'y' or 'n'
13
14 // Get pet type and spaying information
15 cout << "Enter the pet type (cat or dog): ";
16 cin >> pet;
17 cout << "Has the pet been spayed or neutered (y/n)? ";
18 cin >> spayed;
19
20 // Determine the pet tag fee
21 if (pet == "cat")
22 { if (spayed == 'y')
23 cout << "Fee is $4.00 \n";
24 else
25 cout << "Fee is $8.00 \n";
26 }
27 else if (pet == "dog")
28 { if (spayed == 'y')
29 cout << "Fee is $6.00 \n";
30 else
31 cout << "Fee is $12.00 \n";
32 }
33 else
34 cout << "Only cats and dogs need pet tags. \n";
35
36 return 0;
37 }
Step 2: Compile the program and then run it 7 times. For each run use the input test data shown in the table below and write down the fee information that is displayed. Indicate whether or not the displayed information seems to be correct or not.
Run	Input data	 Fee Information 		Correct?	
 	 1 	 cat y	 Fee is $4.00________		__yes___
	 2	 cat n Fee is $8.00________		__yes___
	 3	 cat Y	 Fee is $8.00________		__NO____
	 4	 dog y	 Fee is $6.00________		__yes___	
	 5	 dog n Fee is $12.00_______		__yes___	
 6	 dog Y Fee is $12.00_______		__NO____
 7	 hamster n Only cats and dogs need pet tags. _yes___

Step 3: Improve the program in the following two ways.
· Use a logical OR on lines 22 and 28 so that either a lowercase ‘y’ or an uppercase ‘Y’ is accepted.
· Currently when an animal other than a cat or dog is entered (such as a hamster), the program asks if it is spayed or neutered before displaying the message that only cats and dogs need pet tags. Find a way to make the program only execute the spay/neuter prompt and input when the pet type is cat or dog.
Note: There is more than one correct way to do this. One possible solution is given in petTag-KEY.cpp

Step 4: Recompile your revised program and test it with the same 7 test cases given in the previous table. Make sure it works correctly for all 7 cases.

Step 5: If your professor asks you to do so, print the final, revised source code to hand in.

LAB 4.6 – Using a switch Statement
Step 1: Make a copy of the final, revised color.cpp program in your Lab4 folder and name it switch.cpp. Then remove petTag.cpp from the project and add the switch.cpp program to the project.
Step 2: Replace the if/else if statement that begins on line 20 with a switch statement. Include a final default section to perform the same function the final trailing else does in the if/else if statement. Don’t forget the needed break statements.
Step 3: Compile your program and then test it by running it 5 times, using the same 5 test cases you used in Lab 4.4. You should get the same correct results.
Step 4: If your professor asks you to do so, print the completed switch.cpp source code to hand in.
See switch-KEY.cpp

LAB 4.7 – Complete Program
Step 1: Remove switch.cpp from the project and add the areas.cpp program in your Lab4 folder to the project. This file contains just a program shell in which you will write all the programming statements needed to complete the program described below. Here is a copy of the current contents of areas.cpp.
 1 // Lab 4 areas.cpp
 2 // WRITE A COMMENT BRIEFLY DESCRIBING THE PROGRAM.
 3 // PUT YOUR NAME HERE.
 4 // INCLUDE ANY NEEDED FILES HERE.
 5 using namespace std;
 6
 7 int main()
 8 {
 9 // DEFINE THE NAMED CONSTANT PI HERE AND SET ITS VALUE TO 3.14159
10
11 // DECLARE ALL NEEDED VARIABLES HERE. GIVE EACH ONE A DESCRIPTIVE
12 // NAME AND AN APPROPRIATE DATA TYPE.
13
14 // WRITE STATEMENTS HERE TO DISPLAY THE 4 MENU CHOICES.
15
16 // WRITE A STATEMENT HERE TO INPUT THE USER'S MENU CHOICE.
17
18 // USE AN IF/ELSE IF STATEMENT TO OBTAIN ANY NEEDED INPUT INFORMATION
19 // AND COMPUTE AND DISPLAY THE AREA FOR EACH VALID MENU CHOICE.
20 // IF AN INVALID MENU CHOICE WAS ENTERED, AN ERROR MESSAGE SHOULD
21 // BE DISPLAYED.
22
23 return 0;
24 }
Step 2: Design and implement the areas.cpp program so that it correctly meets the program specifications given below.
	Specifications:
Create a menu-driven program that finds and displays areas of 3 different objects.
The menu should have the following 4 choices:
1 -- square
2 -- circle
3 -- right triangle
 4 -- quit
· If the user selects choice 1, the program should find the area of a square.
· If the user selects choice 2, the program should find the area of a circle.
· If the user selects choice 3, the program should find the area of a right triangle.
· If the user selects choice 4, the program should quit without doing anything.
· If the user selects anything else (i.e., an invalid choice) an appropriate error message should be printed.
	Sample Run
Program to calculate areas of objects

 1 -- square
 2 -- circle
 3 -- right triangle
 4 -- quit

2
Radius of the circle: 3.0
Area = 28.2743

Step 3: Once you have your program working, run it 4 times, each time testing a different valid menu choice. Then run it a fifth time using an invalid menu choice (such as 0 or 5). Make sure your program works correctly for all cases.

Step 4: Print a copy of the source code and the output of all 5 runs to hand in to your professor. 	
See areas-KEY.cpp for one possible solution.

	Starting Out With C++
	
	Early Objects 7th ed.

	
	Lab 5 KEY
	

	
	

	
Name _____________________________

To begin
· Log on to your system and create a folder named Lab5 in your work space.
· Copy all the files in the Chapter05 lab folder to your Lab5 folder.
· Start the C++ IDE running and create a project named Lab5.
LAB 5.1 – TRY IT: Using the Increment and Decrement Operators
Step 1: Add the tryIt5A.cpp program in your Lab5 folder to the project. Below is a copy of the source code lines for int main().
	 1 // Lab 5 tryIt5A

 8 int main()
 9 {
10 int a = 5, b = 5,
11 c = 3, d = 7;
12
13 cout << a-- << ' ';
14 cout << a << ' ';
15 cout << a-- << ' ' << a-- << ' ';
16 cout << a-- << ' ' << a << endl;
17
18 cout << ++b << ' ';
19 cout << b << ' ';
20 cout << ++b << ' ' << ++b << ' ';
21 cout << ++b << ' ' << b << endl;
22
23 a = c++ * d--;
24 cout << a << " " << c << ' ' << d << endl;
25
26 return 0;
27 }

	Expected Output

	Observed Output

 5 4 4 3 2 1__

 6 6 7 8 9 9__

 21 4 6_______

Step 2: Read the source code, paying special attention to the increment and decrement operators, noticing whether each is used in prefix or postfix mode. Then complete the “Expected Output” column, writing down the output you think each set of cout statements will produce.

Step 3: Now compile and run the tryIt5A.cpp program, and look at the output it creates. If the actual output from a cout statement matches what you wrote down, just place a checkmark in the “Observed Output” column. If it is not the same, write down the actual output.
Step 4: Why, in line 24, were double quotes needed to print 2 blank spaces, but single quotes used to print one blank space? Single character literals are represented by single quotes, but if there is more than one character in the literal, it must be stored as a string and strings are represented by double quotes.
LAB 5.2 – TRY IT: Examining Looping Constructs
Step 1: Remove tryIt5A.cpp from the project and add the tryIt5B.cpp program in your Lab5 folder to the project. Below is a copy of the source code lines for int main().
	 1 // Lab 5 tryIt5B

 8 int main()
 9 {
10 int i, // Loop control variable
11 sum; // Accumulator
12
13 i = 1;
14 while (i < 10)
15 { cout << i << ' ';
16 i +=2;
17 }
18 cout << "\nAfter loop i = " << i
19 << endl << endl;
20
21 i = 5;
22 while (i > 0)
23 cout << i-- << ' ';
24 cout << "\nAfter loop i = " << i
25 << endl << endl;
26
27 i = 1;
28 do
29 { cout << i * i << ' ';
30 i++;
31 } while (i <= 3);
32 cout << "\nAfter loop i = " << i
33 << endl << endl;
34
35 sum = 0;
36 for (i = 0; i < 4; i++)
37 sum += i;
38 cout << "After loop i = " << i << endl;
39 cout << "sum = " << sum << endl << endl;
40
41 for (i = 0; i++ < 4;)
42 cout << i << ' ';
43 cout << "\nAfter loop i = " << i << endl;
44
45 return 0;
46 }

	Expected Output

	Observed Output

 1 3 5 7 9____

 After loop i = 11

5 4 3 2 1_____
After loop i = 0

1 4 9_________

After loop i = 4

After loop i = 4
sum = 6________

1 2 3 4________
After loop i = 5

Step 2: Read the source code, paying special attention to how each loop is controlled. Then complete the “Expected Output” column, writing down the output you think each cout statement will produce.

Step 3: Now compile and run the tryIt5B.cpp program, and look at the output it creates. If the actual output from a cout statement matches what you wrote down, just place a checkmark in the “Observed Output” column. If it is not the same, write down the actual output.

LAB 5.3 – Working with Looping Structures
Step 1: Remove tryIt5B.cpp from the project and add the loops.cpp program in your Lab5 folder to the project. Below is a copy of the source code for int main().
 1 // Lab 5 - loops.cpp Working with looping structures
 2 // PUT YOUR NAME HERE.

 6 int main()
 7 {
 8 cout << "PUT YOUR NAME HERE. \n";
 9 cout << "\nActivity 1 \n==========\n";
10 // Change the following do-while loop to a while loop.
11 int inputNum;
12 do
13 { cout << "Enter a number (or 0 to quit): ";
14 cin >> inputNum;
15 } while (inputNum != 0);
16
17 cout << "\nActivity 2 \n==========\n";
18 // Change the following while loop to a do-while loop.
19 char doAgain = 'y';
20 while (doAgain == 'Y' || doAgain == 'y')
21 { cout << "Do you want to loop again? (y/n) ";
22 cin >> doAgain;
23 }
24
25 cout << "\nActivity 3 \n==========\n";
26 // Change the following while loop to a for loop.
27 int count = 0;
28 while (count++ < 5)
29 cout << "Count is " << count << endl;
30
31 cout << "\nActivity 4 \n==========\n";
32 // Change the following for loop to a while loop.
33 for (int x = 5; x > 0; x--)
34 cout << x << " seconds to go. \n";
35
36 cout << "\nActivity 5 \n==========\n";
37 // Make the following changes to the code below that uses nested loops:
38 // 1. The code is supposed to print 3 lines with a $ and 5 stars on
39 // each line, but it contains a logic error. Find and fix the error.
40 // 2. Then revise the code to follow each $ with just 4 stars, like this:
41 // $****
42 // $****
43 // $****
44 // 3. Change the two loop control variable names to be more descriptive.
45 for (int i = 1; i <= 3; i++)
46 { cout << '$';
47 for (int j = 1; j <= 5; j++)
48 cout << '*';
49 }
50 cout << endl;
51
52 return 0;
53 }

Step 2: Put your name on lines 2 and 8. Then compile and run the program to see what it does.
· When Activity 1 asks for inputs use the following inputs:
 5
 2
 0
· When Activity 2 asks for input use the following inputs:
 y
 Y
 n
· Print a copy of the output to compare to the output the program creates after you revise it.
Step 3: Make all the modifications requested in the source code. Then recompile the program and rerun it, using the same inputs specified above for Activities 1 and 2. If you have done everything correctly, you should get the same results as before for Activities 1 – 4. You should get the following output for Activity 5:
$****
$****
$****
Step 4: Print the final, revised source code and the output to hand in. See loops-KEY.cpp for one possible solution. The program output following the student name should look like this:
Activity 1
==========
Enter a number (or 0 to quit): 5
Enter a number (or 0 to quit): 2
Enter a number (or 0 to quit): 0

Activity 2
==========
Do you want to loop again? (y/n) y
Do you want to loop again? (y/n) Y
Do you want to loop again? (y/n) n

Activity 3
==========
Count is 1
Count is 2
Count is 3
Count is 4
Count is 5

Activity 4
==========
5 seconds to go.
4 seconds to go.
3 seconds to go.
2 seconds to go.
1 seconds to go.

Activity 5
==========
$****
$****
$****

LAB 5.4 – Using a Counter, an Accumulator, and an End Sentinel
Step 1: Remove loops.cpp from the project and add the cookies.cpp program in your Lab5 folder to the project. Below is a copy of the source code.
 1 // Lab 5 - cookies.cpp
 2 // This program finds the average number of boxes of cookies
 3 // sold by the children in a particular scout troop.
 4 // It illustrates the use of a counter, an accumulator,
 5 // and an end sentinel.
 6 // PUT YOUR NAME HERE.
 7 #include <iostream>
 8 using namespace std;
 9
10 int main()
11 {
12 int numBoxes, // Number of boxes of cookies sold by one child
13 totalBoxes, // Accumulates total boxes sold by the entire troop
14 numSeller; // Counts the number of children selling cookies
15
16 double averageBoxes; // Average number of boxes sold per child
17
18 // WRITE CODE TO INITIALIZE THE totalBoxes ACCUMLATOR TO 0 AND
19 // THE numSeller COUNTER TO 1.
20
21 cout << " **** Cookie Sales Information **** \n\n";
22
23 // Get the first input
24 cout << "Enter number of boxes of cookies sold by seller " << numSeller
25 << " (or -1 to quit): ";
26 cin >> numBoxes;
27
28 // WRITE CODE TO START A while LOOP THAT LOOPS WHILE numBoxes
29 // IS NOT EQUAL TO -1, THE SENTINEL VALUE.
30 {
31 // WRITE CODE TO ADD numBoxes TO THE totalBoxes ACCUMULATOR.
32 // WRITE CODE TO ADD 1 TO THE numSeller COUNTER.
33
34 // WRITE CODE TO PROMPT FOR AND INPUT THE NUMBER OF BOXES
35 // SOLD BY THE NEXT SELLER.
36 }
37 // WHEN THE LOOP IS EXITED, THE VALUE STORED IN THE numSeller COUNTER
38 // WILL BE ONE MORE THAN THE ACTUAL NUMBER OF SELLERS. SO WRITE CODE
39 // TO ADJUST IT TO THE ACTUAL NUMBER OF SELLERS.
40
41 if (numSeller == 0) // If true, -1 was the very first entry
42 cout << "\nNo boxes were sold.\n";
43 else
44 { // WRITE CODE TO ASSIGN averageBoxes THE COMPUTED AVERAGE NUMBER
45 // OF BOXES SOLD PER SELLER.
46 // WRITE CODE TO PRINT OUT THE NUMBER OF SELLERS AND AVERAGE NUMBER
47 // OF BOXES SOLD PER SELLER.
48 }
49
50 return 0;
51 }

Step 2: Read through the code and the instructions in order to understand the steps that must be carried out to correctly count the number of sellers and accumulate the total number of cookie boxes sold. Notice how lines 41-42 handle the special case where -1 is the very first input, indicating there are no sellers and no boxes sold. This must be handled as a special case to avoid a divide by zero when the number of sellers equals zero.
Step 3: Complete the program by following the instructions in the capitalized comments. Then compile it. Once it compiles with no errors, test it using the following test cases. You should get the results shown.
Run Inputs Expected Output
 1	-1 	 No boxes were sold
 2	41
33
	19
	64
	42
	-1	 The average number of boxes sold by the 5 sellers was 39.8.

3	10
	-10
24
	-1	 The average number of boxes sold by the 3 sellers was 8.
Step 4: Notice that runs 1 and 2 produce desirable results, but run 3 does not. This is because the program does not validate the input data. Only non-negative numbers and -1 (to quit) should be allowed. Add while loops in the appropriate places to validate that the input for number of boxes sold is -1 or greater. Then re-test your program with the same three test cases. The results of test cases 1 and 2 should be the same as before. However, now when test case 3 is run, the -10 input should be rejected and the program should generate the following output:
The average number of boxes sold by the 2 sellers was 17.
Step 5: If your professor asks you to do so, print the final, revised source code and the output of the three test cases to hand in. See cookies-KEY.cpp

Lab 5.5 – Using do-while with a Menu
Step 1: Make a copy of the completed areas.cpp program you wrote for Lab 4.7 and place it in your Lab5 folder. Name it areas2.cpp
Step 2: Remove cookies.cpp from the project and add the areas2.cpp program to the project.
Step 3: Add a do-while loop to the program so that the user can repeatedly display the menu, make a choice, and have the appropriate steps for that choice carried out. The loop should continue iterating until the user enters 4 for the menu choice. Have the program print several blank lines after each case is carried out before the menu displays again.
Step 4: Once the program compiles with no errors, test it with a single run that tries all menu choices before entering 4 to quit. See areas2-KEY.cpp

LAB 5.6 – Complete Program
Step 1: Remove areas2.cpp from the project and add the summation.cpp program in your Lab5 folder to the project. This file contains just a program shell in which you will write the programming statements needed to complete the program described below. Here is a copy of the file.
 1 // Lab 5 - summation.cpp
 2 // This program displays a series of terms and computes its sum.
 3 // PUT YOUR NAME HERE.
 4 #include <iostream>
 5 #include <cmath>
 6 using namespace std;
 7
 8 int main()
 9 {
10 int denom, // Denominator of a particular term
11 finalDenom = 64; // Denominator of the final term
12 double sum = 0.0; // Accumulator that adds up all terms in the series
13
14 cout << "PUT YOUR NAME HERE. \n";
15
16 // WRITE THE CODE TO START A FOR LOOP THAT LOOPS ONCE FOR EACH TERM.
17 // I.E., FOR TERMS WITH DENOMINATORS FROM 2 TO THE FINAL DENOMINATOR.
18 {
19 // WRITE THE CODE TO PRINT THIS TERM.
20 // IF IT IS NOT THE LAST TERM, FOLLOW IT WITH A +.
21 // IF IT IS THE LAST TERM, FOLLOW IT WITH A =.
22
23 // WRITE THE CODE TO ADD THE VALUE OF THIS TERM TO THE ACCUMULATOR.
24 }
25
26 // WRITE A LINE OF CODE TO PRINT THE SUM.
27
28 return 0;
29 }

Step 2: Design and implement the summation.cpp program so that it generates and prints the terms and the sum of the following series: 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
Sample Run:
1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 = .984375
Step 3: Modify the program so that it generates and prints the terms and the sum of this series up through the nth term, where the user enters a value for n between 2 and 10.
For example, if the user enters 5, the program will display the terms and compute and print the summation of the following terms: 1/21 + 1/22 + 1/23 + 1/24 + 1/25
This will require the addition of much more program logic as well as some additional variables.
Sample Run:
This program sums the series 1/2^1 + 1/2^2 + 1/2^3 + . . . + 1/2^n
What should n be in the final term (2 - 10)? 5
1/2 + 1/4 + 1/8 + 1/16 + 1/32 = .96875
Step 4: Once your program is working correctly, add a bottom test loop to the program that asks the user if he or she wishes to compute another series, and which continues to iterate so long as the user enters ‘y’ or ‘Y’. You will need additional program logic and a new variable to do this.

Step 5: Test your program with the following inputs before entering ‘y’ to quit.:
5
6
8
10
If your program is working correctly, all the sums will be less than 1. If they are not, you have a logic error which you need to find and fix.

Step 6: If your professor asks you to do so, print the final, revised source code and the output created by the inputs shown in step 5.
See summation-KEY.cpp
The output for the 4 summations requested in Step 5 are shown here:
1/2 + 1/4 + 1/8 + 1/16 + 1/32 = 0.96875
1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 = 0.984375
1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 = 0.996094
1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512 + 1/1024 = 0.999023
Instructors may wish to point out to students that as n gets bigger and bigger the sum of the series approaches 1. The larger n is, the closer the sum is to 1.

	Starting Out With C++
	
	Early Objects 7th ed.

	
	Lab 6 KEY
	

	
	
	
Name _____________________________

To begin
· Log on to your system and create a folder named Lab6 in your work space.
· Copy all the files in the Chapter06 lab folder to your Lab6 folder.
· Start the C++ IDE running and create a project named Lab6.
LAB 6.1 – TRY IT: Working with Functions and Function Calls
Step 1: Add the tryIt6A.cpp program in your Lab6 folder to the project. Below is a partial listing of the source code.
	 1 // Lab 6 tryIt6A

12 /***** main *****/
13 int main()
14 { int value = 2;
15
16 cout << "Hello from main.\n";
17 printMessage();
18
19 cout << "\nValue returned by tripleIt is "
20 << tripleIt(value) << endl;
21 cout << "In main value now is "
22 << value << endl << endl;
23
24 value = tripleIt(value);
25 cout << "In main value now is "
26 << value << endl;
27
28 value = tripleIt(value);
29 cout << "In main value now is "
30 << value << endl << endl;
31
32 cout << "Goodbye from main.\n";
33 return 0;
34 }
35
36 /***** printMessage *****/
37 void printMessage()
38 {
39 cout << "Hello from PrintMessage.\n";
40 }
41
42 /***** tripleIt *****/
43 int tripleIt(int someNum)
44 {
45 return someNum * someNum * someNum;
46 }

	Expected Output

	
	Observed Output

Hello from main.
Hello from PrintMessage.

Value returned by tripleIt is 8
In main value now is 2

In main value now is 8
In main value now is 512

Goodbye from main.

Step 2: Read the source code, paying special attention to the flow of control from main to the functions it calls and then back to main again. Notice what main passes to each function and what, if anything, the function return. Once you have done this, complete the “Expected Output” box in the table above, writing down what the program will display in the order it will be displayed.
Step 3: Now compile and run the tryIt6A.cpp program, and look at the output it creates. If the actual output matches what you wrote down, just place a checkmark in the “Observed Output” box. If it is not the same, write down the actual output.

LAB 6.2 – Using a void Function
Step 1: Remove tryIt6A.cpp from the project and add the fortunes.cpp program in your Lab6 folder to the project. Below is a copy of the source code.
 1 // Lab 6 fortunes.cpp
 2 // This fortune telling program will be modified to use a void function.
 3 // PUT YOUR NAME HERE.
 4 #include <iostream>
 5 #include <cmath>
 6 using namespace std;
 7
 8 // Function prototype
 9 // WRITE A PROTOTYPE FOR THE tellFortune FUNCTION HERE.
10
11 /***** main *****/
12 int main()
13 {
14 int numYears,
15 numChildren;
16
17 cout << "This program can tell your future. \n"
18 << "Enter two integers separated by a space: ";
19
20 cin >> numYears >> numChildren;
21
22 numYears = abs(numYears) % 5; // Convert to a positive integer 0 to 4
23 numChildren = abs(numChildren) % 6; // Convert to a positive integer 0 to 5
24
25 cout << "\nYou will be married in " << numYears << " years "
26 << "and will have " << numChildren << " children.\n";
27
28 return 0;
29 }
30
31 /***** tellFortune *****/
32 // WRITE THE tellFortune FUNCTION HEADER HERE.
33 // WRITE THE BODY OF THE tellFortune FUNCTION HERE.

Step 2: Run the program to see how it works. What output do you get when you input the following values at the prompt? -99 14
You will be married in 4 years and will have 2 children.
Step 3: Create a function that contains the fortune telling part of the code by doing the following:
· On line 9 write the prototype for a void function named tellFortune that has two integer parameters.
· On line 32 write the function header for the tellFortune function. Following that should be the body of the function. Move lines 22 – 26 of the program to the function body.
· Replace current lines 22 – 26 of main with a call to the tellFortune function that passes it two arguments, numYears and numChildren.

Step 4: Recompile and rerun the program. Enter -99 and 14 again. It should work the same as before.
Step 5: If your professor asks you to do so, print the revised source code and the output of executing it several times, using a variety of inputs. See fortunes-KEY.cpp
LAB 6.3 – Modularizing a Program with void Functions
Step 1: Make a copy of the completed areas2.cpp program you revised in Lab 5.5 and place it in your Lab6 folder. Name it areas3.cpp
Step 2: Remove fortunes.cpp from the project and add the areas3.cpp program to the project.
Step 3: Modularize the program by adding the following 4 functions. None of them have any parameters.
· void displayMenu()
· void findSquareArea()
· void findCircleArea()
· void findTriangleArea()
To do that you will need to carry out the following steps:
· Write prototypes for the four functions and place them above main.
· Write function definitions (consisting of a function header and initially empty body) for the four functions and place them below main.
· Move the appropriate code out of main and into the body of each function.
· Move variable definitions in main for variables no longer in main to whatever functions now use those variables. They will be local variables in those functions. For example, findSquareArea will need to define the side variable and findCircleArea will need to define the radius variable. All of the functions that compute areas will now need to define a variable named area.
· Move the definition for the named constant PI out of main and place it above the main function.
· In main, replace each block of removed code with a function call to the function now containing that block of code.
Step 4: Compile the code, fixing any errors until it compiles without errors. Then test it. Make sure it runs correctly for all menu choices.
Step 5: If your professor asks you to do so, print the revised source code and the output of executing it , selecting each menu choice at least once. See areas3-KEY.cpp

LAB 6.4 – Using a Function that Returns a Value
Step 1: Remove areas3.cpp from the project and add the choice.cpp program in your Lab6 folder to the project. Below is a copy of the source code.
 1 // Lab 6 choice.cpp
 2 // This program illustrates how to use a value-returning
 3 // function to get, validate, and return input data.
 4 // PUT YOUR NAME HERE.
 5 #include <iostream>
 6 #include <cmath>
 7 using namespace std;
 8
 9 // Function prototype
10 int getChoice();
11
12 /***** main *****/
13 int main()
14 {
15 int choice;
16
17 cout << "Enter an integer between 1 and 4: ";
18
19 // WRITE A LINE OF CODE TO CALL THE getChoice FUNCTION AND TO
20 // ASSIGN THE VALUE IT RETURNS TO THE choice VARIABLE.
21
22 cout << "You entered " << choice << endl;
23 }
24
25 /***** getChoice *****/
26 int getChoice()
27 {
28 int input;
29
30 // Get and validate the input
31 cin >> input;
32 while (input < 1 || input > 4)
33 { cout << "Invalid input. Enter an integer between 1 and 4: ";
34 cin >> input;
35 }
36 return input;
37 }

Step 2: Read through the code to see how it works. Notice that the getChoice function validates the input before returning it.
Step 3: Follow the directions given in the uppercase comments on lines 4 and 19-20. Then compile and run the program. When prompted for an input, use the data shown in the sample run below. You should get the same results.
Sample Run
Enter an integer between 1 and 4: 0
Invalid input. Enter an integer between 1 and 4: 9
Invalid input. Enter an integer between 1 and 4: 2

You entered 2

Step 4: Now make the getChoice function more versatile so it can validate that a choice is in any desired range, not just 1 – 4. Do this by carrying out the following steps:
· Add two integer parameters named min and max to the function header and modify the function prototype to agree with this.
· Revise the function so that it now validates that the input is between min and max. Remember to change the error prompt as well as the test condition of the while loop.
· Revise the line of code in main that calls the function so that it now passes two arguments to the function. Pass the values 1 and 4 to the function (though other values would work also).
Now recompile and rerun the program, again using the data from the sample run shown above. The program should produce the same results as it did before.
Step 5: If your professor asks you to do so, print the revised source code and the output of executing it with the sample run data. See choice-KEY.cpp

LAB 6.5 – Modularizing a Program with Value-Returning Functions

For this lab exercise you will make additional improvements to the areas program you worked on in Lab 4, Lab 5, and earlier in this lab.
Step 1: In your Lab6 folder make a copy of your areas3.cpp file. Name it areas4.cpp
Step 2: Remove choice.cpp from the project and add the areas4.cpp program to the project.
Step 3: Copy the getChoice function you just wrote in the choice.cpp file for the Lab 6.4 exercise and paste it below the displayMenu function definition in the areas4.cpp file. Add a function prototype for the getChoice function at the top of the program where the other prototypes are located. Now, change the following line of code in main
	cin >> choice;
to
	choice = getChoice(1, 4);
This will ensure that choice is assigned a value between 1 and 4. Therefore the final else if can be removed from the if/else if statement that controls the branching. After doing this, test the program to make sure everything works so far, before going on to the next step.
Step 4: Now, make the findSquareArea, findCircleArea, and findTriangleArea functions into value-returning functions. They should each return a double value. Change their function headers and function prototypes to indicate this. Then, instead of having them print the area, have them return the area they have computed. Finally, change the call to each of these functions in main so that the value returned by the function call will be printed. For example, you will change
if (choice == 1)
 findSquareArea();
to
if (choice == 1)
 cout << "Area = " << findSquareArea() << endl;

Step 5: Compile the code, fixing any errors until it compiles without errors. Then test it. Make sure it runs correctly for all menu choices.
Step 6: If your professor asks you to do so, print the revised source code and the output of executing it , selecting each menu choice at least once.
See areas4-KEY.cpp

LAB 6.6 – Using Value and Reference Parameters

Step 1: Remove areas4.cpp from the project and add the swapNums.cpp program in your Lab6 folder to the project. Below is a copy of the source code.
 1 // Lab 6 swapNums.cpp -- Using Value and Reference Parameters
 2 // This program uses a function to swap the values in two variables.
 3 // PUT YOUR NAME HERE.
 4 #include <iostream>
 5 using namespace std;
 6
 7 // Function prototype
 8 void swapNums(int, int);
 9
10 /***** main *****/
11 int main()
12 {
13 int num1 = 5,
14 num2 = 7;
15
16 // Print the two variable values
17 cout << "In main the two numbers are "
18 << num1 << " and " << num2 << endl;
19
20 // Call a function to swap the values stored
21 // in the two variables
22 swapNums(num1, num2);
23
24 // Print the same two variable values again
25 cout << "Back in main again the two numbers are "
26 << num1 << " and " << num2 << endl;
27
28 return 0;
29 }
30
31 /***** swapNums *****/
32 void swapNums(int a, int b)
33 { // Parameter a receives num1 and parameter b receives num2
34 // Swap the values that came into parameters a and b
35 int temp = a;
36 a = b;
37 b = temp;
38
39 // Print the swapped values
40 cout << "In swapNums, after swapping, the two numbers are "
41 << a << " and " << b << endl;
42 }

Step 2: Read the source code, paying special attention to the swapNums parameters. When the program is run do you think it will correctly swap the two numbers? Compile and run the program to find out.
Explain what happened. The swapNums parameters are local variables. Parameter a receives a copy of the value stored in main’s num1 variable and parameter b receives a copy of the value stored in main’s num2 variable. The values in the swapNums local memory are switched, but swampNums does not have access to the original arguments in main to change them.

Step 3: Change the two swapNums parameters to be reference variables. Section 6.13 of your text shows how to do this. You will need to make the change on both the function header and the function prototype. Nothing will need to change in the function call. After making this change, recompile and rerun the program. If you have done this correctly, you should get the following output. See swap-KEY.cpp

In main the two numbers are 5 and 7
In swapNums, after swapping, the two numbers are 7 and 5
Back in main again the two numbers are 7 and 5

Explain what happened this time. The swapNums parameters are now reference variables. That means that they receive the address of the original variables passed to them and can access and change whatever is stored at those locations. When they swap the two values, they are swapping the contents of main’s num1 and num2 variables.
You do not need to hand in the source code or output from this lab exercise.

LAB 6.7 – Complete Program
Step 1: Remove swapNums.cpp from the project and add the kiloConverter.cpp program in your Lab6 folder to the project. This file contains just a program shell in which you will write the programming statements needed to complete the program described below. Here is a copy of the file.
 1 // Lab 6 kiloConverter.cpp
 2 // This menu-driven program lets the user convert
 3 // pounds to kilograms and kilograms to pounds.
 4 // PUT YOUR NAME HERE.
 5 #include <iostream>
 6 using namespace std;
 7
 8 // Function prototypes
 9 // WRITE PROTOTYPES FOR THE displayMenu, getChoice,
10 // kilosToPounds and poundsToKilos FUNCTIONS HERE.
11
12 /***** main *****/
13 int main()
14 {
15 // DECLARE ANY VARIABLES MAIN USES HERE.
16
17 // WRITE THE CODE HERE TO CARRY OUT THE STEPS
18 // REQUIRED BY THE PROGRAM SPECIFICATIONS.
19
20 return 0;
21 }
22
23 /***** displayMenu *****/
24 // WRITE THE displayMenu FUNCTION HERE.
25 // THIS void FUNCTION DISPLAYS THE MENU CHOICES
26 // 1. Convert kilograms to pounds
27 // 2. Convert pounds to kilograms
28 // 3. Quit
29
30 /***** getChoice *****/
31 // THIS IS THE SAME FUNCTION YOU WROTE EARLIER IN THIS SET
32 // OF LAB EXERCISES. JUST FIND IT AND PASTE IT HERE.
33
34 /***** kilosToPounds *****/
35 // WRITE THE kilosToPounds FUNCTION HERE.
36 // IT RECEIVES A WEIGHT IN KILOS AND MUST CALCULATE
37 // AND RETURN THE EQUIVALENT NUMBER OF POUNDS.
38
39 /***** poundsToKilos *****/
40 // WRITE THE poundsToKilos FUNCTION HERE.
41 // IT RECEIVES A WEIGHT IN POUNDS AND MUST CALCULATE
42 // AND RETURN THE EQUIVALENT NUMBER OF KILOS.

Step 2: Design and implement a modular, menu-driven program that converts kilograms to pounds and pounds to kilograms. 1 kilogram = 2.2 pounds. The program should display a menu, accept and validate a user menu choice, get the amount of weight to be converted, call the appropriate function to do the conversion, and then print the returned result. The code should continue iterating to allow additional conversions to be done until the user enters the menu choice to quit. When the program runs it should look somewhat like the sample run shown here.

Sample Run

1. Convert kilograms to pounds
2. Convert pounds to kilograms
3. Quit

1
Weight to be converted: 4
4 kilograms = 8.8 pounds.

1. Convert kilograms to pounds
2. Convert pounds to kilograms
3. Quit

2
Weight to be converted: 10
10 pounds = 4.54545 kilograms.

1. Convert kilograms to pounds
2. Convert pounds to kilograms
3. Quit

3

Step 3: Once your program is written and compiles with no errors, thoroughly test it.
Step 4: If your professor asks you to do so, print the completed source code and the output produced by executing it , selecting each menu choice at least once. See kiloConverter-KEY.cpp

	

